

Orhan Eroglu, Dylan R. Boyd, Mehmet Kurum

InforMation PRocESsing and Sensing (IMPRESS) Lab

http://impress.ece.msstate.edu/

SCoBi Simulator

Developer’s Manual

v1.0

2018

http://impress.ece.msstate.edu/

1

Table of Contents

1. Introduction .. 2
1.1. General... 2

1.2. System Requirements .. 2

1.3. Downloading and Installation .. 2

1.4. About This Document .. 2

1.5. Help SCoBi Improve ... 3

1.6. How to Cite This Study? ... 3

2. SCoBi Overall Architecture .. 4
2.1. Structural Design ... 4

2.2. Behavioral Design .. 8

3. SCoBi Source Code Entities .. 12
3.1. scobi Package ... 12

3.1.1. bistatic Package ... 12

3.1.2. constants Package ... 12

3.1.3. ground Package ... 13

3.1.4. gui Package .. 13

3.1.5. init Package .. 13

3.1.6. main Package... 14

3.1.7. param Package .. 15

3.1.8. plot Package .. 16

3.1.9. products Package .. 16

3.1.10. util Package .. 16

3.2. vegetation Package .. 16

3.2.1. param Package .. 16

3.2.2. propagation Package ... 16

3.3. multilayer Package ... 17

3.3.1. ground Package ... 17

3.3.2. multidiel Package ... 17

3.3.3. param Package .. 17

2

1. Introduction

1.1. General

SCoBi, the Signals of Opportunity (SoOp) Coherent Bistatic scattering model and simulator, is a

framework that is designed to use the Information Processing and Sensing (IMPRESS) Lab’s fully

coherent scattering model within a user-friendly simulation interface to enable comprehensive

analysis of bistatic SoOp configurations for land applications. The current SCoBi release (v1.0.0)

boasts the following capabilities:

 Fully polarimetric analysis with any combination of linear and/or circular polarizations

 Antenna property realizations including antenna orientation, pattern, and cross-
polarization coupling

 Interferometric effect implementation caused by complex voltage and beamforming

 Geometry effects induced by altitude, orientation, and spreading loss over vegetation
depth and soil moisture profile

SCoBi generates power and complex field outputs for the direct signals between the transmitter

and the receiver, and the coherent reflection coefficient and reflectivity outputs regarding the

specular point between the antennas. The SCoBi model is capable of handling the diffuse

vegetation scattering mechanisms through Monte Carlo simulations via distorted Born

approximation, but this feature is not included in the current version of the SCoBi simulator

framework (due to the dominance of the specular term over diffuse contribution [1], [2]). A

comprehensive description of the theory behind the model can be found in [1].

1.2. System Requirements

SCoBi supports the following platforms and environments:

 OS: Windows 10 64 bit

 Environment: MATLAB R2015a (the oldest version that is tested with SCoBi) or above

1.3. Downloading and Installation

SCoBi software can be accessed from the following github repository:

https://github.com/impresslab/SCoBi

It can also be downloaded from the following URL:
http://impress.ece.msstate.edu/impress-lab/software/scobi/source-code/

There is no installation requirement for the current version. In other words, it can be directly run

from within the source code when it is downloaded.

1.4. About This Document

The SCoBi Developer;s Manual has been prepared to document the architectural design of the

SCoBi simulator framework, to help the potential developers understand the implementation

https://github.com/impresslab/SCoBi
http://impress.ece.msstate.edu/impress-lab/software/scobi/source-code/

3

details, and to expedite further extensions to the system. This document has its own version

number convention regardless of that of the SCoBi simulator software. The two-digit version

number of this document represents the major updates (to the document) in the first digit and minor

changes in the second digit. On the other hand, the three-digit version number of the SCoBi

software represents the major updates to the framework in the first digit, minor changes in the

second digit, and bug-fixes in the third digit.

1.5. Help SCoBi Improve

Please send us an email via the following address to make requests or to report any bugs through

using the software:

impress@ece.msstate.edu

1.6. How to Cite This Study?

The SCoBi software is open-source under GNU General Public License (GPL) and freely available

with its documentation, design, and tutorial videos. However, the developers of the SCoBi model

and the simulator would appreciate those who cite the corresponding studies below in the case

they are used:

SCoBi Model:

M. Kurum, M. Deshpande, A. T. Joseph, P. E. O’Neill, R. Lang, and O. Eroglu, “SCoBi-Veg: A
generalized bistatic scattering model of reflectometry from vegetation for Signals of Opportunity
applications,” IEEE Trans. Geosci. Remote Sensing, Press.

SCoBi Simulator:

O. Eroglu, Dylan R. Boyd, and M. Kurum, “SCoBi: A free, open-source, SoOp coherent bistatic
scattering simulator framework,” IEEE Geosci. and Remote Sensing Magazine, Review.

mailto:impress@ece.msstate.edu

4

2. SCoBi Overall Architecture

The SCoBi simulator framework has been developed by an iterative and incremental development

process (including requirements analysis, design, implementation, testing, and deployment). For

instance, the requirements analysis was mostly done during the creation of the SCoBi model [1] in

several years, and then the simulator framework has been designed, implemented, and tested with

increments. However, many iterations have been performed on the requirements, design, and

implementation after results of the tests and findings of the studies [1], [2] accomplished by the

preliminary SCoBi versions. Our tests have demonstrated the verification of the SCoBi simulator

framework. In other words, tests show that the simulator meets the requirements of the SCoBi

model. The validation of SCoBi is mature to some degree since the simulated results in [1], [2]

satisfy real-world expectations. Moreover, airborne data will be used for experimental validation in

the future. For this purpose, observatory data are currently being collected over several terrains by

using a drone. The maintenance of the SCoBi product will be handled by the authors for scheduled

improvements (such as improving exception-handling mechanisms or adding new SoOp analysis

types), user requests, and possible scientific collaborations.

The SCoBi source code has been implemented in the MATLAB R2017a environment; however, it

is compatible with the versions above MATLAB R2015a (The oldest version which SCOBi was

tested with) within MS Windows Operating System (Windows 10 64-bit). SCoBi does not require

additional toolboxes or plugins of the MATLAB environment. MATLAB has been chosen for the

development because of its common use among the researchers, efficient handling of the matrices,

simple scripting features, and plotting capabilities. Both the structural and behavioral design

models of the SCoBi software can be found in the Sparx Systems’ Enterprise Architect design file

[3]. Enterprise Architect application requires a purchased license to use; however, the structural

and behavioral designs are described in detail in this document as well.

2.1. Structural Design

The SCoBi architectural design is mainly achieved with the procedural programming (PP)

principles that MATLAB intrinsically supports. However, object oriented programming (OOP)

design and implementation principles are also utilized as needed for advanced design, data

encapsulation, manipulation, code organization and readability, and maintenance purposes.

Combining two design approaches is for the purpose of having the enumerated advantages of the

OOP design while exploiting MATLAB’s procedural scripting capabilities. For instance, the

simulation engine (runSCoBi.m) is simply operated by a MATLAB procedure (function)

implementation, whereas the dynamic and static system parameters are handled with the help of

several classes with singleton pattern features. The software packages within the source code are

determined with respect to the relational hierarchy between each software entity (MATLAB

functions or classes). Each package consists of several functions and/or classes. The UML (Unified

Modeling Language) package diagram for the SCoBi source code (/source/lib/) packages is

shown in Fig. 1. The runSCoBi.m function is directly under the lib package. It uses several

packages to perform specific tasks in order to compute the model’s output; for instance, the gui

package is used to obtain the user inputs for simulations, init and param packages are used to

initialize the simulation parameters by using the information (inputs) from the gui package, and the

main package is used to perform every simulation iteration. The main package uses the param

package to manipulate parameters-related tasks, the bistatic package to handle the bistatic

geometry, the ground package to account for ground operations (dielectric calculation, and

5

specular reflection), the multilayer and vegetation packages if involved in a simulation, and the

products package to create and store simulation outputs. There are information flows from the

bistatic, ground, multilayer (if included), and vegetation (if included) packages to the products

package.

The SCoBi design file (created in the Enterprise Architect tool) also includes the UML class model

of the software (lib package). In fact, class models are dedicated to the class instances in the OOP

designs; however, we employed this model to depict the entire structural relations (usage,

information flow, or inheritance) between the source code entities (MATLAB functions and

classes). Although this is not a valid use of the class model, it can help the developers understand

the general structure of SCoBi. The class model of the entire SCoBi software is too large to show

in this document, and it can only be viewed from within the design file. On the other, because the

overall SCoBi class model is highly complicated, we also provide class models for the runSCoBi.m

and mainSCoBi.m functions, which are the simulation engine and simulation iterator functions,

respectively. These two models only show the dedicated function (runSCoBi.m or mainSCoBi.m)

and its first-degree relations with the other source code entities. The class models for runSCoBi.m

and mainSCoBi.m are shown in Fig. 2 and Fig. 3, respectively.

6

Fig. 1. SCoBi Package Diagram

7

Fig. 2. runSCoBi.m Class Model. This model mimics actual OOP class models to show the structural
hierarchy between functions and classes in SCoBi. It shows only the runSCoBi.m function and its first-
degree relations.

8

Fig. 3. mainSCoBi.m Class Model. This model mimics actual OOP class models to show the structural
hierarchy between functions and classes in SCoBi. It shows only mainSCoBi.m and its first-degree relations.

2.2. Behavioral Design

UML behavioral diagrams such as sequence and activity diagrams are specialized to demonstrate

the dynamic aspects of software programs. We used the UML activity diagrams to show the

temporal flow of the SCoBi simulator. The SCoBi design file contains two activity diagrams for both

the simulation engine and simulation iterator since these two deals with the overall flow. The SCoBi

simulator framework always starts with running the runSCoBi.m function. The activities and the

decisions that are performed within this function are shown in Fig. 9. In summary, it gets the user

inputs, initializes the parameters and the simulation by using these inputs with the help of input

validation controls, and calls the simulation iterator (mainSCoBi.m) after writing the simulation

reports.

The runSCoBi.m determines the required number of simulation iterations for a chosen simulation

by using the parameters manager class. This is because the simulation mode, Snapshot or Time-

series, in conjunction with the system and configuration inputs may change the number of total

simulation iterations. Details of this phenomenon are described in both the user’s manual [4] and

the tutorial videos [5]. The simulation engine then runs the simulation iteration function

(mainSCoBi.m) for the number of simulations.

The simulation iteration function, mainSCoBi.m, is always the same regardless of the analysis

type. However, the analysis type and input selections affect the package usage and procedure

calls within mainSCoBi.m. For instance, a vegetation analysis requires SCoBi to use the software

package, vegetation, and call several related procedures such as propagation calculation.

9

The flow of the mainSCoBi.m function is shown in a UML activity diagram in . Since this function

is called in every iteration of the simulation engine, it handles the updates and calculations related

to the iterative steps. For instance, it starts with updating the dynamic parameters for the bistatic

geometry and ground surface. These updates are needed in each iteration since the simulation

inputs may contain changing transmitter orientation angles and land geophysical parameters such

as VSM and RMSH. If the Ground Structure is Multi-layered, the multi-layer dielectric profiles are

computed. If the Ground Cover is Vegetation, the vegetation propagation is calculated.

Furthermore, the vegetation attenuation values are written into an Excel file if chosen by the user.

The polarization rotation matrices for the local antenna coordinate systems are also required to be

updated due to the changes in the bistatic geometry in each iteration. Finally, the current iteration

gets ready to generate the SoOp deliverables (the direct and specular contributions) for the

parameters in the iteration, and stores the iteration calculations incrementally to the simulation

outputs.

10

Fig. 4. runSCoBi.m (Simulation engine) Activitiy Diagram

11

Fig. 5. mainSCoBi.m (Simulation iteration function) Activitiy Diagram

12

3. SCoBi Source Code Entities

The SCoBi source code entities (MATLAB functions and classes) are described here with respect

to their packages under the lib package. The packages and their functions and classes here are

listed alphabetically except the first three packages that are directly located under the lib package.

3.1. scobi Package

This package mostly consists of the sub-package that perform specific operations within the SCoBi

simulator. The only code entitity that this package includes is the runSCoBi.m function.

i. Function runSCoBi: It is the simulation engine function. runSCoBi.m,

 Starts the simulation,

 Calls GUI classes to get the user inputs,

 Performs input validity check by using the ParamsManager class’s functions

 Runs the simulation iterations for the required number of simulations.

3.1.1. bistatic Package

This package consists of the functions that perform operations related to the bistatic geometry.

Below are the functions of this package:

i. Function bistaticGeometry: Calculates and outputs the bistatic geometry-related

transformation matrices, direction vectors, and rotation matrices.

 It calls calcFresnelZones function to calculate the Fresnel zones for the specular
reflection point and to use them in the calculation of the other points.

ii. Function calcFresnelZones: Calculates and outputs the Fresnel zones for the specular

reflection point and to use them in the calculation of the other points.

iii. Function transmitterGeometryManual: Calculates the transmitter geometry-

related transformation matrices.

iv. Function updateBistaticDynParams: Calls the functions that calculate the bistatic

geometry and transmitter parameters and updates the bistatic dynamic parameters

(BistaticDynParams) with those parameter values in each simulation iteration.

 Calls transmitterGeometryManual function to calculate the transmitter geometry-
related transformation matrices.

 Calls bistaticGeometry function to calculate the bistatic geometry-related transformation
matrices, direction vectors, and rotation matrices.

 Updates BistaticDynParams class

v. Function updateRotMatDynParams: Calculates the antenna polarization rotation matrices

and updates RotMatDynParams with those values in each simulation iteration.

3.1.2. constants Package

This package contains the final static Constant and ConstantNames classes that contain global

variable that are used through the entire SCoBi simulator, and the Directories class that is used for

13

tracking the source code directories.

i. Class Constants: It contains the global constant variables. This class only consists of

constant (final) properties that keep the global values for any purpose.

ii. Class ConstantNames: Global constant naming strings (char arrays). This class only

consists of constant (final) properties that keep the global names for any purpose (e.g. files,

variables, xml tags, etc.) in the simulation.

iii. Class Directories: This class allows the simulator to access to the source code and input

directories. It has attributes for specific source code and input directories that are required

to be accessed throughout the simulation. Every attribute can be reached by a static getter

method.

3.1.3. ground Package

This package contains functions that perform ground-related calculations..

i. Function dielDobson: It implements the Dobson ground dielectric model.

ii. Function dielMironov: It implements the Mironov ground dielectric model.

iii. Function dielWang: It implements the Wang ground dielectric model.

iv. Function reflectionCoeffSingle: Calculates the equivalent reflection coeff. of the rough

ground from the Fresnel reflection coeff. of an avg. flat surface. Ground is considered as

surface-only.

v. Function updateGndDynParams: Calculates the effective roughness parameter and calls

the ground dielectric functions (Dobson, Mironow, Wang) to calculate the dielectric constant,

and updates GndDynParams class with those values in each simulation iteration.

3.1.4. gui Package

i. Package images: It keeps the iamge files that are needed by the GUI windows.

ii. Package main: It houses the GUI and handle classes for the Analysis Selection Window.

gui_SCoBiMain.fig is the GUI file that is created by using MATLAB’s GUIDE tool.

gui_SCoBiMain.m is the auto-generated class for gui_SCoBiMain.fig.

gui_SCoBiMain_Manager: It’s the handle class for the above GUI files. It implements the

actions for GUI callbacks.

iii. Package scobi: It houses the GUI and handle classes for the Simulation Inputs Window.

gui_SCoBi.fig is the GUI file that is created by using MATLAB’s GUIDE tool.

gui_SCoBi.m is the auto-generated class for gui_SCoBi.fig.

gui_SCoBi_Manager: It’s the handle class for the above GUI files. It implements the actions

for GUI callbacks.

3.1.5. init Package

This package contains the functions that initializes the static parameters of the SCoBi simulations

by using the given inputs.

14

i. Function initAllInputParams:This function calls the other parameter-initializer functions in

an order to initialize the system parameters.

ii. Function initConfigParams: Fetches the configuration parameters' values from the input

structure and initializes the ConfigParams class. It implements preprocessing of data

beyond initialization (such as generating the combination of Snapshot simulation mode).

iii. Function initGndParams: Fetches the ground parameters' values from the input structure.

 Initializes the GndParams class.

iv. Function initRxParams: Fetches the receiver parameters' values from the input structure

and initializes the RxParams class. It implements interpretation of inputs beyond initialization

(such as deciding which antenna pattern is used) and initializing that as well.

 Calls the appropriate function to create the receiver antenna voltage pattern.

v. Function initRxGGParams: Fetches the parameters' values for the receiver with

Generalized-Gaussian antenna pattern.

 Initializes the RxGGParams class.

vi. Function initRxUserDefinedParams: Fetches the parameters' values for the receiver with

a custom (User-defied) antenna pattern.

 Initializes the RxUserDefinedParams class.

vii. Function initSimSettings: Fetches the simulation setting parameters' values from the input

structure.

 Initializes the simSettings class.

viii. Function initTxParams: Fetches the transmitter parameters' values from the input structure.

 Initializes the TxParams class.

ix. Function initVegParams: Fetches the vegetation parameters' values, if any, from the input

structure.

 Initializes the VegParams class.

x. Function initWithInputs: It’s quite different than the other functions in this package. This

function initializes the simulator with the recently initialized parameters.

 Initializes the simulation output directories.

 Saves input parameters for future reference.

 Calls a number of ParamsManager functions to determined ssimulation-related

parameter

 Check the parameters’ validity.

3.1.6. main Package

This package only contains the mainSCoBi.m function.

i. Function maisnSCoBi: It performs every simulation iteration that is called by the

runSCoBi.m function. In every single iteration, it

15

 Calls the update functions for the dynamic parameters,

 Calls multilayer and/or vegetation related functions,

 Calculates the SoOp products incrementally throughout the simulations.

3.1.7. param Package

This package contains the classes of the static and dynamic parameters of the system.

i. Class ParamsManager: It is a static class that provides several functions for parameter

management. It manages the parameters (which are constructed once from the inputs

before simulations start held by static or dynamic parameter classes) throughout the entire

simulation. There are two sub-packages under this package: dynamic and static

ii. Package dynamic: This package contains the classes that hold dynamic parameters that

are calculated and updated in every simulation iteration. Below are the dynamic parameter

classes:

 Class BistaticDynParams: This class houses the properties that are used for

hbistatic geometry parameters such as the range, coordinate transformation

matrices, propagation vectors, antenna rotation matrices, and significant points.

 Class GndDynParams: Since the SCoBi simulator is using variable parameters such

as volumetric soil moisture and roughness, ground parameters such as dielectric

constant and effective surface roughness parameters change in every iteration. This

changes require such parameters to be updated in every iteration. This Class holds

those dynamic parameters.

 Class RotMatDynParams: Similar to the GndDynParams class, antenna polarization

rotation matrices should be calculated in each iteration because the antenna

orientation might change thruugh the entire simulation.

iii. Package static:This package consists of classes that are initialized at the beginning of the

whole simulation and used as is.

 Class ConfigParams: This class holds the multi-valued parameters that can be

changing from iteration to iteration such as DoYs, transmitter orientation angles, VSM,

and surface roughness.

 Class GndParams: It keeps the static ground parameters such as the soilmixture

information.

 Class RxParams: It keeps the receiver antenna-related parameters such as its

polarization, orientation, etc.

 Class RxGGParams: It houses the parameters(e.g. beamwidth, side-lobe level, and

cross-polarization level) that are specific to the Generalized-Gaussian receiver

antenna.

 Class RxUserDefinedParams: It houses the parameters that are specific to the User-

defined receiver antenna.

 Class SimSettings: Significant simulation settings such as the campaign name,

ground cover, and simulation mode.

16

 Class TxParams: It keeps the transmitter antenna-related parameters such as its

polarization, orientation, etc.

3.1.8. plot Package

This package is not in the simulator’s regular flow; however, it can be briefly described here with

the plotting functions: plotReflevtivityVsEL and plotReflectivityVsVSM. These functions allw the

user to plot the outputs of the simulations.

3.1.9. products Package

This package contains the functions that calculate and store the simulated SoOp deliverables.

i. Function directTerm: It calculates the direct (line-of-sight) received field and power between

the transmitter and the receiver.

 Stores the calculated values into simulation output folders in an incremental fashion

as the simulation iterations continue.

ii. Function specularTerm: It calculates the specular reflection coefficient (coherent bistatic

forward scattering through the specular reflection point) and reflectivity.

 Stores the calculated values into simulation output folders in an incremental fashion

as the simulation iterations continue.

3.1.10. util Package

This package contains several utility functions that perfrorm from calculation of Muller matrices to

writing to the file. The individual function details will not be given here.

3.2. vegetation Package

This package and its entities are dedicated to the simulations with the vegetation cover.

3.2.1. param Package

This package is similar to that of the scobi package.It only contains the static sub-package and

one class in it.

i. Class VegParams: This class is only initialized if the ground cover is vegetation. It holds the

parameters that are specific to vegetation layers such as dimensions, particle dielectrics.

3.2.2. propagation Package

This package is dedicated to the vegetation propagation calculations..

i. function calcPropagation: This function calculates propagation and attenuation due to the

vegetation layer, if any. Uses the functions eCylinder and eDisk to make calculations for

dieelctric cylinder (stalk, branch, or needle) and dielectric disk (leaf)

 Stores the calculations into simulation output folders as metadata

17

ii. function eCylinder: It handles the dielectric cylinder calculations.

iii. function eDisk: It handles the dielectric disk calculations.

iv. function writeAttenuation: This function writes the vegetation propagation results to an

Excel file if selected through the simulation settings.

3.3. multilayer Package

This package consists of three sub-packages contain functions that handles the multi-layered

ground structure.

3.3.1. ground Package

Similar to the \scobi\ground this package is responsible the multi-layered ground calculations.

i. Function generateDielMLProfiles: Generates the selected dielctricprofiles (2nd order, 3rd

order, logistic fit, discrete-slab) if the ground structure is Multi-layered.

 Updates the dynamic Multi-layered dielectric parameters (DielMLDynParams) with

those parameters’ values in each simulation iteration.

 Uses the information from GndMLParams and GndDynParams

ii. Function reflectionCoeffsML: Calculates the equivalent reflections coefficients of the multi-

layered surface for the chosen dielectric profiles.

3.3.2. multidiel Package

This package is responsible for handling the reflection response of multilayered structure.

3.3.3. param Package

It is similar to the param package of the scobi package.This package holds the static and dynamic

parameter classes for the SCoBi multilayer.

