Code Record
2018-07-09
[DOI: 10.21982/nkd7-cd05] gapfill
Gerber, Florian
Tools to predict missing values in satellite data and to
develop new gap-fill algorithms. The methods are tailored to
data (images) observed at equally-spaced points in time.
The package is illustrated with MODIS NDVI data.
Code Link: gapfill.zip
Code Size: 206474 bytes
Code MD5 Checksum: 501a7acb19c9b8f42b5fe9edd1b2a355
Appears in: Gerber, F., de Jong, R., Schaepman, M. E.,
Schaepman-Strub, G., and Furrer, R. Predicting missing values in
spatio-temporal remote sensing data. IEEE Transactions on Geoscience
and Remote Sensing, 56(5):2841–2853, 2018. doi: 10.1109/TGRS.2017.2785240
See Also: https://git.math.uzh.ch/florian.gerber/gapfill, https://CRAN.R-project.org/package=gapfill
Code Languages: C++, R
To compile code: The
statistical software R is needed (runs on most Mac, Windows, and Linux operating systems).
Sensor Categories: Optical Radiometer, Optical Imager, Optical Spectrometer
Instrument Processing and Calibration Categories: Optical Radiometer, Optical Imager, Optical Spectrometer, Other - Sensor
Keywords: gapfill, gap-fill, prediction, missing values, low quality
values, R, clouds, parallel processing, parallel, R package,